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ADJUSTED MAXIMUM LIKELIHOOD ESTIMATION OF THE MOMENTS OF 

LOGNORMAL POPULATIONS FROM TYPE I CENSORED SAMPLES

by Timothy A. Cohn

ABSTRACT

An adjusted maximum likelihood estimator is presented for the 

moments of lognormal populations given type I censored samples. The 

estimator is shown to be efficient, and nearly-unbiased in moderate- 

size samples.

1. INTRODUCTION: THE PROBLEM

This paper considers estimation of lognormal population moments 

from type I censored samples. Such samples arise, for example, in 

estimating loads of trace pollutants, since sample concentrations often 

fall below the analytical detection limits of the laboratory [Kushner, 

1976; Owen and DeRouen, 1980; Gilliom and Helsel, 1986; and Helsel and 

Gilliom, 1986]. In the general case, one has a set of N independent 

observations, {Xj. . . X^}, K of which are censored because they did not

exceed the censoring threshold. The censoring thresholds are denoted 

\J\). It is assumed that the Xj come from an uncensored lognormal

population with parameters {p,c}, and probability density function (PDF) 

given by:
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XiO

f(x) =

x-V2-Tt-cr
x>0

One wants to estimate the population mean or other moments. The 

expression for the r^ non-central population moment, Mr , of a lognormal

variate is given by Aitchison and Brown [1981]:

Mr = exp(r-;i + r2 -<3 2/2) (1.2)

Maximum likelihood estimators, first developed by Hald [1949] and 

Cohen [1950], are usually recommended for use with type I censored data 

[David, 1981], They are efficient and nearly-unbiased in many 

applications IDavid, 1981 p. 138]. The log-likelihood function, given 

type I censored samples and assuming a lognormal distribution, is:

L = lnL= £<-ln(c)- 2 ^ } * £ {ln(*[   5    ])}(!. 3) 
Xi>T t X k <Tk

where 4>[-3 is the standard normal CDF. The first derivatives of equation 

(1 .3) with respect to the parameters can be set to zero and solved for 

the MLE parameter estimates £ and 3:

= 0 (1.4) 
X<T



= 0 
X k <Tk

(1.5)

where £|(s[    -    ] is a standardized censoring threshold, and <p[-] is

the standard normal PDF. £ and 6, the solutions of equations (1.4) and 

(1.5), can be expressed as functions of sufficient statistics [van Zwet, 

1966], and are often negligibly-biased estimates of ji and (5 even in 

small samples [Stedinger and Cohn, 1986].

Several authors [see Cohen, 1976; Rukhin, 1986] discuss the 

corresponding MLE estimator for the rth population moment, Mr :

Mr = expfr-ji + r2 -3 2/2) (1.6)

which is consistent, asymptotically normal and asymptotically efficient 

[Kendall and Stuart, 1979, p. 41-43]. However, Mr has poor properties in

small samples even when the complication of censoring is not present. 

Kendall and Stuart 11979, p. 74] note that:

E{(Mr)} = EUexp(r-ji * r2 .3 2/2)]}

" (N " 1)/2
= exp(r-;i * r2 -tf 2 /(2-N)) - (1-r2 -c 2/N)

> Mr (1.7)



Thus fir is always upwardly biased, and lacks a finite mean if N < r2 -a 2 .

Finney [1941] derives an adjusted moment estimator (in fact, a 

Rao-Blackwell estimator) which solves the moment-estimation problem 

for uncensored samples. He defines a function,

(n-1) tf. (n-1)' t» 
f(t) =1 +t + - +

p=4
(n+lK..-(n+2-p-3) IP'J (1.8)

It can then be shown [Finney, 1941; Kendall and Stuart, 1979, p. 74] that

E[exp(g)-f(Sy/2)] = exp()i+a 2/2) = M, (1.9)

2
where y and sy are the unbiased sample mean and variance estimators of

the logarithms of the X's. Since any function of jointly sufficient 

statistics, given suitable regularity conditions, is a minimum variance 

estimator of its expectation [Aitchison and Brown, 1981, p. 45], the 

Finney estimator is optimal (UMVUE) in the class of unbiased estimators. 

Figure 1 (which corresponds to Finney's [1941] Figure 1) displays the 

relative efficiency (the ratio of the variances) of the unbiased sample

  N Xt 2 ^ (Xi-)T) 2 
moment estimators (X s]T -TT) and (Sx e]T >. , ) compared with the

i=1 i=1

corresponding UMVUEs. The sample-moments estimators are 

substantially less efficient than the UMVUE for large values of c 2 .



Rukhin [1986] derives downward-biased Bayesian estimators that, in 

small samples, have substantially lower mean square errors (MSE) than 

the UMVUE.

0.00 0.50 1.00 1.50 2.00

VALUE OF C5 2
2.50 3.00

MEAN VARIANCE

FIGURE 1: Relative efficiency of the sample mean and sample variance 
estimators to the UMVUE (Finney) estimator, as a function of 0 2 .

No comparable Rao-Blackwell estimator exists in the case of type 

1 censored data. In fact, van Zwet [1966] demonstrates that virtually 

all "unbiased estimation is impossible" with type I censored normal 

samples, since there is always a finite probability of zero threshold 

exceedances. However, it may still be possible to derive an estimator 

whose bias is negligibly small for cases of interest. It is the purpose 

of this paper to present such an estimator.

This paper proceeds along the following lines. Results from 

Shenton and Bowman [1977] are used to obtain first-order estimates of



the bivariate distribution of $ and 5 2 . Asymptotically independent 

functions of £ and 52 are derived. The distribution of one function is 

asymptotically normal. The distribution of the second function is 

asymptotically gamma, with shape parameter (oO given as a function

only of the standardized censoring level, {£,[} & \ and sample
G

size. An Adjusted Maximum Likelihood Estimator (AMLE), similar to 

Finney's [1941], is then derived for estimating the lognormal moments. 

The AMLE is asymptotically equivalent to the MLE, but is found in Monte
CJ 2

Carlo experiments to be substantially less biased than the MLE if -TJ- is 

large.

2. THE COVARIANCE AND BIAS OF THE ESTIMATORS

The derivation of the first-order biases and variances requires a 

few results which are provided in the Appendix. However, some 

notational conventions will facilitate discussion. Let:



de

where the e's are arbitrary parameters.

The first-order covariance matrix, denoted (cJ 2 -V), of ji and 5 is 

given by.-

CJ 2 -V s tf 2 -

LJJCJ L CJCJ _

-1

(2.1)

The matrix elements, L0i0 j, are given in the Appendix.

A first-order estimate of the bias of the MLE estimator 6t of 

is given by Shenton and Bowman [1977, equation 3.12b ; see Hosking,

1985]:

222 fi .p. p ~
el - I I I Le '%8ke 

j=! k=i ui
(2.2)

Adapting the procedure described in Kendall and Stuart [1979, p. 66-8], 

first-order biases, which depend on jj and <J 2 only through {£j}, can be

computed for "standardized" estimators:



, The set {^...f^} are estimated by {£j«   -     . i=1....N}. First-order

estimates of the variance of £i can be obtained from the parameter 

variances [Kendall and Stuart. 1977. p. 247]:

(In(Tj)-ji) = Var[    ~   

- 2-41-V * 4i 2 -V0<J (2.3)

For moderate sample sizes (N>50), and a single censoring threshold 

between the 20th and 60^ percentiles, the standard error of estimates 

of £i is approximately 1.5/-/N". Figures 2 and 3 show that the first- 

order standardized biases and variances remain relatively constant over
e 

short ranges of £i. even for high levels of censoring. Thus B[(~)] and

e 
Ve, respectively the first-order bias and variance of ( ), are known

quite accurately. Although the cases shown correspond to a single 

censoring threshold (£i=£ for all i), the same results apply for multiple

thresholds.
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VALUE OF C2
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First-order bias of the standardized MLE parameter estimators, 
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VALUE OF C 2

 " VAR[jI/tf]   COVl£/0 f<5 2/<J2]     ' VAR[C 2]

FIGURE 3: First-order covariances of the standardized MLE parameter 
estimators, given a singly-censored sample of size 50, as a function of the 
standardized censoring threshold.



3. THE FIRST-ORDER SAMPLING DISTRIBUTIONS OF £ AND 6 2

^ o 
tf 2

With uncensored data, (^-) has a gamma distribution with PDF 

given by:

0 x<0

f(x) = ^ (3.1)
X>0

N-1 2 
where the parameters are given by c*= -j- , and £ = TT . With censored

** o 
CJ 2

data, the exact distribution of (  y) is not known. However, the
52

asymptotic distribution of (-) is gamma, with parameters {c*,£)

available from the asymptotic biases: 

5 = Mean2/Variance

a*

CJ'

<?

10



5 2
u+B^i-]) 2

(3.2)52

Mean/of

(3.3)

A J XAs N increases, the biases go to zero and p * (* ). With complete

5< 1 
(uncensored) data, the (second-order) bias of (--) is (777) and the'N 

estimators are a function of sample size alone:

<* = -^  (3.4)

2/N (3.5)

** oa 2 
Equations (3.1), (3.2) and (3.3) then give the exact distribution of (-17),

With complete samples jl is normally distributed and independent
** oa2

- I* 5 distribution is described exactly by first-order results.

11



With censored samples, jl is neither normally-distributed nor * o c 2
uncorrelated with (-r>r). However, one can define a new variate,

CJC

Cov[jl.5 2] 
Vartd 2] (3.6)

which is asymptotically normal and uncorrelated with 6 2 , and is thus 

asymptotically independent of 5 2 .

To first order, the expected value of oi is:

Etco] = }-a«]

where

(3.7)

Blast-]- (3.8)

12



e has the same units as <j-i. However, e is small in magnitude (zero for 

complete samples), and can be estimated by

(3.9)

Neglecting the bias correction, the first-order variance of u> is then:

A-C5 2 (3.10)

where

V2
JJC5 2

< V (3.11)

The final inequality emphasizes that (I> is less variable than £.

13



4. ESTIMATING THE POPULATION MOMENTS

** otf 2 
Given that (7) is a gamma (<*,£) variate, it can be shown that for

integer p>0 [Rohatgi, 1976, p. 207]:

E{52P}

(4.1 )

Following the reasoning of Finney [1941] and Bradu and Mundlak [1970], 

let

00 tP F(oO 
H<t,oU» = I ^-

p=0

00 tP ______ 1 ______
S [pT]tpP.{o(.(^1).(^2)...(^p-1)}] M '2) 

p=0

Combining equations (4.1) and (4.2), one obtains

00 (S-c 2 )P

p=0

exp(S-c5 2 ) (4.3)

14



where S is an arbitrary constant. Now consider the estimator: 

Mr s exp(r.o>)-H((r2/2 - r-e - r2 -A/2)-6 2 ,o<,p) (4.4)

Because o> and 8 2 are assumed to be independent, 

E[Rr] = E{exp(r.co)} . E{H((r2/2 - r-c - r2 -A/2)-3 2 ,o<,P)}

* exp[r-|i + r-e-c 2 +r2 .A.<5 2/2]-exp[r2 .<5 2/2 - re-c 2 - r2 -A/2]

= exp(r-;i + r2 -<3 2/2)

= M r (4.5)

Mr is called an Adjusted Maximum Likelihood Estimator (AMLE). With 

large N: A goes to zero; <x becomes large; £ converges to (  )? H(t,o<,p)

converges to exp(t); and therefore Mr , the AMLE, converges to Mr , the 

MLE. While the method has been derived for the r*h non-central moment, 

it can be generalized to any function of the form:

exp(crjjt + c2 -<3 2 ) (4.6)

where c1 and C2 are arbitrary constants, including estimation of the 

variance of a lognormal population [see Like¥, 1980].

15



5. VARIANCE OF THE AMLE ESTIMATOR

The variance of the AMLE estimator can be obtained in terms of the 

true values of the parameters [see Bradu and Mundlak, 1970]. Note that:

Var(Mr) = E[fir2I - (E[Mr]) 2

« E[Mr2]- |exp(r-ji + r2 -c* 2/2)}2 (5.1)

For large N,

E[Mr2 ] = E[{exp(r-a>)-H((r2/2 - r-e - r2 -A/2)-5 2 ,o<,£)} 2 ]

= E[exp(2.r.£)].E[H 2(S-5 2 ,o<,£)]

4-r2 -Var[o>] 
* exp( 2-r-E[G>] *   2    ' ' E[H 2(5-cJ 2 ,cy,g)] (5.2)

where E[d)] and Var[d)] are known, and

r2 -A 
8 i= (r2/2 - r-e - -j-)

From equation (4.2), H 2(t,c*,£) can be expressed as an infinite series:

16



00 °° tp*i r2(op
I I [̂ V«-

p=u q=0

00

£ Wh -[t/£]h (5.3) 
h=0

where

r2 (oO 
Wh

/2(oc*h-1
h

Expanding equation (5.3) yields:

(5.5)
Jl -lOfMU I II I 13

h=0

Recalling equation (4.1), one now obtains

h=0 

= exp(2-S-02) . H(S 2 -a4,oU) (5.6)

17



This can be substituted into equation (5.2), and then into equation (5.1), 

to yield an estimate of the variance of Mr in terms of ji and c 2 .

6. MONTE CARLO RESULTS

A Monte Carlo experiment was conducted to determine the finite- 

sample properties of the AMLE estimator when estimating the mean and 

variance of a lognormal population. Separate experiments were run for 

samples of size N=50 independent (pseudo-random) observations drawn 

from lognormal populations with shape parameter, c, between 0.2 and 

2.0. These values of a correspond to coefficients of variation ranging 

from 0.2 to 7.3, and coefficients of skew between 0.6 and 414. The 

scale parameter, ji, was set to zero, which entails no loss of generality. 

Each experiment was conducted for censoring levels of Q% (uncensored), 

50* and 70*. Experiments were also conducted with several distinct 

censoring thresholds in each sample, but the results were not 

qualitatively different than what one sees given a single threshold. In 

each generated sample, any observation failing to exceed the specified 

censoring threshold was censored.

Two criteria were used to assess the estimators' performance: 

bias and variance. Given 10000 sample estimates for each case, the 

estimators' standardized bias and variance were estimated by:

18



Standard bias
f'(flrl-Mr)' 

10000 ^ M r

Standard variance = ]T

10000 
1*1 _

f(Mri-Mr)]2 
10000 \ Mp J

VOOOO

Two alternative estimators were tested for comparison: the linear 

regression LR method [Gilliom and Helsel, 1986], which involves using 

standard sample moment estimates after "filling in" the censored values 

from a regression of the above-threshold values on their plotting 

positions; and MLE estimators. The LR method is equivalent to the 

standard moment estimates in the case of no censoring. The closed- 

form variance of the AMLE estimator given in equations (5.2) and (5.6) 

was also computed for the estimator of the mean.

Tables 1-4 report the results of the experiments. Table 1 displays 

the biases of the three estimators of the mean. In no case does the 

standardized bias of the AMLE exceed 1%, although the bias is 

statistically significant (alpha=5fc level) in four of the fifteen cases 

tabulated. The LR method also shows negligible bias. The MLE, as in the 

uncensored case, becomes highly biased for large values of c*. Table 2 

contains the variances of estimators of the mean. The AMLE has the 

lowest variance for all cases tested, although it does not differ greatly 

from the LR method for small values of o. Table 2 also contains the 

closed-form 'EXACT AMLE' results worked out in section 6. In all but 

two of the fifteen cases the Monte Carlo results do not differ

19



significantly (alpha=5fc level) from the closed-form results. Tables 3 

and 4 correspond to the same cases that appear in Tables 1 and 2, but 

give results for the performance of estimators of the population 

variance rather than of the population mean.

i.oo

0.10

0.00 0.50 1.00 1.50 2.00

VALUE OF tf 2
3.00

LR-MEAN-50%  <>  LR-MEAN-70* LR-VAR.-50* LR-VAR.-70*

FIGURE 4: Relative efficiency of the linear regression (LR) mean and variance 
estimators to the corresponding AMLE estimators as a function of a 2 . From 
Monte Carlo experiments, with censoring thresholds at the 50 th and 70th 
percentiles.

Figure 4 compares the efficiency of the LR estimator to the AMLE 

with data censored at the 50th and 70th percentiles, as a function of tf 2 . 

This figure can be compared with Figure 1. For large values of tf 2 , the 

results are nearly identical to those found by Finney. For smaller values 

of tf 2 , the LR estimator is substantially less efficient than the AMLE 

estimator. As in Figure 1, the differences are more pronounced for the 

variance estimator than they are for the mean estimator.

20
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0.00 0.50 1.00 1.50 2.00
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2.50 3.00

 *- AMLE-MEAN-  < 

50*

>  AMLE-MEAN- 

70*

  - AMLE-VAR.- 

50*

0- AMLE-VAR.- 

70*

FIGURE 5: Relative efficiency of the censored-data AMLE estimators to the 
complete-data UMVUE, as a function of <5 2 . From Monte Carlo experiments, with 
censoring thresholds for the AMLE at the 50th and 70th percentiles.

Figure 5 compares the efficiency of the AMLE censored-data 

estimators to the AMLE with uncensored data (Finney's estimator). This 

indicates the loss of information that goes with failing to observe the 

exact values of the below-threshold observations. Even for considerable 

amounts of censoring, the censored-data AMLE estimator is nearly as 

efficient as the complete-data estimator. For example, for C2=1.0 and 

50*-censoring, one expects 25 above-threshold observations. Yet the 

relative efficiency of the AMLE estimator, compared to the complete- 

data estimator, is above 95* when estimating the population mean, and 

close to 70* when estimating the population variance.

21



7. AN EXAMPLE

Approximately 100 analytical laboratories around the world 

participate in a quality assurance program run by the U.S. Geological 

Survey. In one study [Janzer, 1985], natural river water from the South 

Platte (Colorado) was sent to the laboratories for analysis. Thirteen of 

the laboratories analyzed their samples by direct atomic absorption, and 

reported the following concentrations for dissolved iron []ig/l]:

11 <1 4 100 5 <50 <10

42 220 <20 30 <10

70

The '<T' values indicates that the laboratory was unable to detect iron 

at the level of T [jag/U. Estimates of the mean and standard deviation 

of the reported concentrations were required, assuming that the reported 

values are independent, identically-distributed lognormal variates.

Log-space parameter estimates were computed using both the 

Linear Regression method and Maximum Likelihood:

Method Employed
Linear Regression 
Maximum Likelihood

u
2.432 
2.336

CJ

1.827 
1.890

82

3.S732

22



The corresponding estimates of the population mean and variance, 

and standard deviation were computed:

Method Employed
Linear Regression 
Adjusted Max. Likelihood 
Maximum Likelihood

Mean
38.6 
48.1 
61.7

Variance
. 3906.9 
13331.1 

131915.4

(Std. Dev.) 2
= (62.5) 2 
= (11 5.5) 2 
= (363.2)2

Without knowing the true distribution, it is difficult to say which 

estimator performed best. The point here is that the estimates can 

differ greatly.

8. SUMMARY

This paper considers estimation of the moments of lognormal 

populations from moderate-sized type I censored samples. An adjusted 

maximum likelihood method is derived which seems to have negligible 

bias. It is shown to be more efficient than either the MLE or a linear 

regression-based estimator. Also, it is observed that moderate levels 

of type I censoring on the left may not substantially reduce the 

information content of a sample if one is interested in estimating 

population moments.

23
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APPENDIX

This appendix provides the derivations for some of the terms 

employed in the main body of the paper. The results are based entirely 

on the derivatives of the log-likelihood function.

After some manipulation of equation (1.3), one obtains: 

LJJL = 0 (A.I) 

La = 0 (A.2)

(A.3)

(A.4)

{(1 -4»H1 -3-D] * <DU2 -B * 2't-Q]} (A.5) 
1 = 1

(A.6)

(A.7)

-t-B * 2-01} (A.B)

25



N
<M12-D - 2] - <H£^C + 6-£2 -B + 6-£.Q]} (A.9)

<HQ-B * C]}

(Pi

26

N
2'£/<P + (p-[£,-B + Q] + *-[2-B * £,-C]} (A.I 2)

(A.I 3)
w + ^j *

N

+ 2-[cp + £,-((p-Q * 4>-B)] } (A.I 4)

2
= ^'Lcjc5,)i - (^-)*Lc5c5 (A.I 5)

where



B

C s C

The terms required for estimating the bias and variance of 5 2 and 5 4 

can be obtained by repeated application of the chain rule to the above 

results.
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TABLE 1

Standardized Bias of LR, MLE and AMLE Estimators of the Mean of a Lognormal
Population Based on 10000 Monte Carlo Experiments 

(N=50 ; Censoring Threshold at 0%, 50%, and 70*)

Results for <J = 0.2

UNCENSORED 
50% CENS. 
70% CENS.

LR (ST. ERR.) 
0.0002 (0.0003) 
0.0045 (0.0004) 
0.0070 (0.0005)

MLE (ST. ERR.) 
0.0002 (0.0003)

-0.0005 (0.0003)
-0.0005 (0.0005)

AMLE (ST. ERR.) 
0.0002 (0.0003) 
0.0005 (0.0003) 
0.0020 (0.0004)

Results for <J = 0.6

UNCENSORED 
50% CENS. 
70% CENS.

LR (ST. ERR.) 
0.0006 (0.0009) 
0.0093 (0.0010) 
0.0190 (0.0012)

MLE (ST. ERR.) 
0.0012 (0.0009) 
0.0017 (0.0009) 
0.0041 (0.001 1)

AMLE (ST. ERR.) 
0.0006 (0.0009) 
0.0013 (0.0009) 
0.0056 (0.001 1)

Results for <J = 1.0

UNCENSORED 
50% CENS. 
70% CENS.

LR (ST. ERR.) 
0.0010 (0.0019) 
0.0098 (0.0018) 
0.0240 (0.0019)

MLE (ST. ERR.) 
0.0061 (0.0018) 
0.0121 (0.0018) 
0.0176 (0.0019)

AMLE (ST. ERR.) 
0.0010 (0.0017) 
0.0018 (0.0018) 
0.0081 (0.0018)

Results for <J = 1.4

UNCENSORED 
50% CENS. 
70% CENS.

LR (ST. ERR.) 
0.0021 (0.0036) 
0.0086 (0.0035) 
0.0227 (0.0034)

MLE (ST. ERR.) 
0.0212 (0.0029) 
0.0440 (0.0034) 
0.0603 (0.0037)

AMLE (ST. ERR.) 
0.0014 (0.0028) 
0.0022 (0.0031) 
0.0091 (0.0031)

Results for <J = 1.8

UNCENSORED 
50% CENS. 
70% CENS.

LR (ST. ERR.) 
0.0055 (0.0075) 
0.0094 (0.0074) 
0.0201 (0.0073)

MLE (ST. ERR.) 
0.0577 (0.0047) 
0.1290 (0.0069) 
0.1970 (0.0101)

AMLE (ST. ERR.) 
0.0017 (0.0043) 
0.0027 (0.0050) 
0.0085 (0.0054)
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TABLE 2

Standardized Standard Error of LR, MLE and AMLE Estimators of the Mean of a
Lognormal Population Based on 10000 Monte Carlo Experiments

(N=50 ; Censoring Threshold at 0*. 50*. and 70*)

Results for c = 0.2

UNCENSORED 
50% CENS. 
70% CENS.

LR (ST. ERR.) 
0.0283(0.0002) 
0.0356(0.0003) 
0.0534(0.0006)

MLE (ST. ERR.) 
0.0283(0.0002) 
0.0328(0.0003) 
0.0450(0.0004)

AMLE (ST. ERR.) 
0.0283(0.0002) 
0.0325(0.0003) 
0.0441(0.0004)

EXACT AMLE 
0.0286 
0.0326 
0.0435

Results for G = 0.6

UNCENSORED 
50* CENS. 
70* CENS.

LR (ST. ERR.) 
0.0926(0.0007) 
0.0967(0.0008) 
0.1225(0.0010)

MLE (ST. ERR.) 
0.0918(0.0007) 
0.0942(0.0007) 
0.1079(0.0009)

AMLE (ST. ERR.) 
0.0916(0.0007) 
0.0937(0.0007) 
0.1074(0.0009)

EXACT AMLE 
0.0923 
0.0945 
0.1091

Results for G = 1.0

UNCENSORED 
50* CENS. 
70* CENS.

LR (ST. ERR.) 
0.1863(0.0022) 
0.1812(0.0021) 
0.1886(0.0018)

MLE (ST. ERR.) 
0.1754(0.0015) 
0.1818(0.0017) 
0.1852(0.0017)

AMLE (ST. ERR.) 
0.1733(0.0015) 
0.1762(0.0016) 
0.1794(0.0016)

EXACT AMLE 
0.1742 
0.1754 
0.1791

Results for c = 1 A

UNCENSORED 
50* CENS. 
70* CENS.

LR (ST. ERR.) 
0.3601(0.01 19) 
0.3531(0.0120) 
0.3444(0.01 18)

MLE (ST. ERR.) 
0.2942(0.0031) 
0.3412(0.0056) 
0.3741(0.0080)

AMLE (ST. ERR.) EXACT AMLE 
0.2823(0.0029) 0.2833 
0.3045(0.0039) 0.2979 
0.31 13(0.0045) 0.2973

Results for a = 1.8

UNCENSORED 
50* CENS. 
70* CENS.

LR (ST. ERR.) 
0.7484(0.0681) 
0.7444(0.0683) 
0.7352(0.0687)

MLE (ST. ERR.) 
0.4734(0.0070) 
0.6874(0.0359) 
1.0080(0.0688)

AMLE (ST. ERR.) 
0.4271(0.0059) 
0.5000(0.0126) 
0.5375(0.0148)

EXACT AMLE 
0.4284 
0.4793 
0.4947
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TABLE 3

Standardized Bias of LR, MLE and AMLE Estimators of the Variance of a
Lognormal Population Based on 10000 Monte Carlo Experiments

(N=50 ; Censoring Threshold at 0%, 50%, and 70%)

Results for a = 0.2

LR (ST. ERR.)
UNCENSORED 0.0005 (0.0024) 
50% CENS. -0.0402 (0.0035) 
70% CENS. -0.0430 (0.0044)

MLE (ST. ERR.)
-0.0164 (0.0022)
-0.0003 (0.0032) 

0.0006 (0.0040)

AMLE (ST. ERR.)
0.0007 (0.0022)

 0.0002 (0.0032)
0.0008 (0.0040)

Results for c = 0.6

LR (ST. ERR.)
UNCENSORED 0.0022 (0.0051) 
50* CENS. -0.0148 (0.0056) 
70* CENS. -0.0251 (0.0060)

MLE (ST. ERR.) 
0.0136 (0.0037) 
0.0508 (0.0051) 
0.0630 (0.0061)

AMLE (ST. ERR.) 
0.0015 (0.0036) 
0.0013 (0.0046) 
0.0044 (0.0052)

Results for c = 1.0

UNCENSORED 
50* CENS. 
70* CENS.

LR (ST. ERR.) 
0.0132 (0.0162) 
0.0083 (0.0163) 
0.0035 (0.0164)

MLE (ST. ERR.) 
0.1 165 (0.0075) 
0.3018 (0.0152) 
0.5297 (0.0317)

AMLE (ST. ERR.) 
0.0020 (0.0063) 
0.0032 (0.0084) 
0.0040 (0.0097)

Results for tf = 1.4

UNCENSORED 
50* CENS. 
70* CENS.

LR (ST. ERR.) 
0.0538 (0.0629) 
0.0530 (0.0630) 
0.0520 (0.0630)

MLE (ST. ERR.)
0.4545 (0.0205)
2.0140 (0.3265)

16.2400 (5.4950)

AMLE (ST. ERR.) 
0.0021 (0.01 14) 
0.0083 (0.0203) 
0.0034 (0.0231)

Results for tf = 1.8

UNCENSORED 
50* CENS. 
70* CENS.

LR (ST. ERR.) 
0.1254 (0.1993) 
0.1253 (0J993) 
0.1253 (0.1994)

MLE (ST. ERR.)
1.7940 (OJ094)

88,OJ00<60,5700)
4.55E+04C3.01E+04)

AMLE (ST. ERR.)
0,0009 (0.0225)
0.0335 (0.0754)

 0.0169 (0.0672)
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TABLE 4

Standardized Standard Error of LR. MLE and AMLE Estimators of the 
Variance of a Lognormal Population Based on 10000 Monte Carlo

Experiments 
(N=50; Censoring Threshold at 0%, 50*. and 10%)

Results for <s = 0.2

UNCENSORED 
50% CENS. 
70% CENS.

LR (ST. ERR.) 
0.2354 (0.0022) 
0.3455 (0.0034) 
0.4368 (0.0046)

MLE (ST. ERR.) 
0.2195 (0.0018) 
0.3194 (0.0029) 
0.4020 (0.0039)

AMLE (ST. ERR.) 
0.2227 (0.0018) 
0.3187 (0.0029) 
0.4038 (0.0039)

Results for <s = 0.6

UNCENSORED 
50% CENS. 
70% CENS.

LR (ST. ERR.) 
0.5145 (0.0171) 
0.5591 (0.0170) 
0.5986 (0.0173)

MLE (ST. ERR.) 
0.3736 (0.0041) 
0.5059 (0.0080) 
0.6084 (0.01 13)

AMLE (ST. ERR.) 
0.3615 (0.0039) 
0.4545 (0.0062) 
0.5188 (0.0077)

Results for <s = 1.0

UNCENSORED 
50% CENS. 
70% CENS.

LR (ST. ERR.) 
1.6180 (0.2376) 
1.6300 (0.2370) 
1.6470 (0.2367)

MLE (ST. ERR.) 
0.7545 (0.0154) 
1.5220 (0.1797) 
3.1800 (0.3977)

AMLE (ST. ERR.) 
0.6314 (0.01 15) 
0.8376 (0.0392) 
0.9666 (0.0430)

Results for <s = 1 A

UNCENSORED 
50* CENS. 
70% CENS.

LR (ST. ERR.) 
6.2980 (1.9330) 
6.3010 (1.9330) 
6.3070 (1.9330)

MLE (ST. ERR.) 
2.0450 (0.1 1 10) 
3.27E+OK1.45E+01) 
5.50E+02(2.02E+02)

AMLE (ST. ERR.) 
1.1410 (0.0442) 
2.0320 (0.4307) 
2.3060 (0.3505)

Results for e = 1.8

LR (ST. ERR.)
UNCENSORED 19.9400 (8.0940) 
50% CENS. 19.9400 (8.0940) 
70% CENS. 19.9400 (8.0950)

MLE (ST. ERR.) 
1.09E+OK1.55E+00) 
6.06E+03(3.00E+03) 
3.01E+06(1.10E+06)

AMLE (ST. ERR.) 
2.2390 (0.1906) 
7.5460 (3.1390) 
6.7290 (2.0130)


